Significance of the Trimethylsilyl Moiety in Synthetic Carborane Transformations: Conversion of $nido - [(CH_3)_3Si]_2C_2B_4H_6$ to $nido - [(CH_3)_3Si]_2C_4B_8H_{10}$ by Thermal Elimination of Trimethylsilane, an Important Advance in Carborane Chemistry

Narayan S. Hosmane,* Mojdeh Dehghan, and Susan Davies

Department of Chemistry

Southern Methodist University, Dallas, Texas 75275 Received June 22, 1984

Oxidative ligand fusion in which metallacarboranes such as $(R_2C_2B_4H_4)_2FeH_2$ and $(R_2C_2B_4H_4)_2CoH$ (R = CH₃, C₂H₅, or C_3H_7) undergo conversion to $R_4C_4B_8H_8$ was first reported by Grimes and co-workers.¹ Since this first report, a number of similar oxidative ligand fusions have been reported, all of which involved either a metal-complex intermediate or a metal catalyst.²

Recently, we have developed³ several convenient high-yield methods for the synthesis of *nido*-2-[(CH₃)₃Si]-3-[R]-2,3-C₂B₄H₆ $(R = (CH_3)_3Si, CH_3, or H)$. Although several *closo*-metallacarborane derivatives were synthesized,^{4,5} the significance of the trimethylsilyl groups in the chemistry of these carboranes and metallacarboranes was not stressed. We report herein the direct, one-step, high-yield fusion of nido-2,3-[(CH₃)₃Si]₂-2,3-C₂B₄H₆ to give $nido-[(CH_3)_3Si]_2C_4B_8H_{10}$ without the need of a metal catalyst.

A 2.42-g (11.0 mmol) sample of 2,3-bis(trimethylsilyl)-2,3dicarba-nido-hexaborane (8) was heated at 210 °C for 3 days in a sealed reactor tube equipped with a break-seal at one end. The break-seal was then opened in vacuo, and the volatile products were removed. Fractionation yielded 0.82 g of (CH₃)₃SiH (11.08 mmol), collected at -196 °C, and 1.31 g of $[(CH_3)_3Si]_2C_4B_8H_{10}$ (4.49 mmol; 81.6% yield; bp 208 °C (10 torr of Ar)) collected at 0 °C. In addition, a very small quantity of noncondensable gas, presumably hydrogen, was also pumped out. A nonsublimable, brown polymeric material (0.19 g) remained in the reactor tube. Removal of all the exo-polyhedral C-trimethylsilyl groups could not be achieved even at 300 °C.

The electron-impact (EI) mass spectrum of [(CH₃)₃Si]₂C₄B₈H₁₀ exhibits an intense parent grouping $\left[\left({}^{12}\text{CH}_3 \right)_6 {}^{28}\text{Si}_2 {}^{12}\text{C}_4 {}^{11}\text{B}_8\text{H}_{10}^+ \right]$ with the major cutoff at m/e 292 and strong groups with local cutoffs at m/e 277, 263, 249, 219, 147, 73, and 45 that correspond to the fragments $({}^{12}CH_3)_5{}^{28}Si_2{}^{12}C_4{}^{11}B_8H_{10}^+,$ $({}^{12}CH_3)_4{}^{28}Si_2{}^{12}C_4{}^{11}B_8H_{11}^+,$ $({}^{12}CH_3)_3{}^{28}Si_2{}^{12}C_4{}^{11}B_8H_{12}^+,$ $({}^{12}CH_3)_3{}^{28}Si^{12}C_4{}^{11}B_8H_{10}^+,$ ${}^{12}C_4{}^{11}B_8H_{11}^+,$ $({}^{12}CH_3)_3{}^{28}Si^+,$ and ${}^{12}CH_3{}^{28}SiH_2^+,$ respectively. The pattern of intensities in each fragment is consistent with the natural isotopic distribution of boron and silicon.

The undecoupled and proton-decoupled ¹¹B and ¹H pulse Fourier-transform NMR data (Table I) confirm the presence of eight B-H_{terminal} units with no bridging hydrogen atoms. The ¹¹B NMR spectrum of the tetracarbon carborane bears no similarity to that of the precursor, $nido-[(CH_3)_3Si]_2C_2B_4H_6$, which has a high-field doublet and a single low-field doublet with an integral

(3) Hosmane, N. S.; Sirmokadam, N. N.; Buynak, J. D. Abstr. IME-BORON-V, 1983, CA22, 39. Hosmane, N. S.; Sirmokadam, N. N.; Mol-lenhauer, M. N. J. Organomet. Chem. in press.

(4) Hosmane, N. S.; Sirmokadam, N. N. Organometallics 1984, 3, 1119.
(5) Hosmane, N. S.; Sirmokadam, N. N.; Mollenhauer, M. N. "Abstracts of Papers", 18th Organosilicon Symposium, Schenectady, NY, April 6, 1984. Hosmane, N. S.; Sirmokadam, N. N.; Herber, R. H. Organometallics, in press

Table I. FT NMR Data of [(CH₃)₃Si]₂C₄B₈H₁₀^a

		relative	
nuclei	$\delta (J, Hz)^b$	area	assignment
¹ H	7.02 br s	1	cage CH
	5.66 (154) br	1	-
	5.12 (158) overlapping	1	H _t (base, apex)
	4.47 (179) quartets	1	
	4.08 (181)	1	
	0.19 s	9	(CH ₃) ₃ Si
11 B	9.98 (152) d	1	$B_{(4)}-H$
	8.86 (156) d	1	B ₍₉₎ −H
	6.15 (158) d	2	$B_{(6,11)} - H$
	-17.27 (178) d	2	B(5.10)-H
	-20.85 (181) d	2	$B_{(1,12)} - H$
13C	105.44 s		cage carbon, CSiB
	97.69 (195) d		cage CH
	0.05 (118) quartet		(CH ₃) ₃ Si
²⁹ Si	0.03 (6.1) m, 10 lines		(CH ₃) ₃ Si

^a¹H, 200.132; ¹¹B, 64.2; ¹³C, 50.32; ²⁹Si, 39.76 MHz. ^b For all the spectra, a neat liquid sample was taken in an 8-mm tube, sealed off, and inserted in a 10-mm standard NMR tube containing CDCl3 for deuterium lock. Chemical shifts (in ppm) are relative to $(CH_3)_4 \hat{S}^i$ for the nuclei ¹H, ¹³C, and ²⁹Si and BF₃O(C₂H₅)₂ for ¹¹B, with a positive sign denoting a downfield shift.

Scheme I

ratio of 1:3 due to an apical B(1)-H and overlapping of basal B(4)-H, B(5)-H, and B(6)-H resonances, respectively.³ Both the ¹H and ²⁹Si NMR spectra show only one type of trimethylsilyl group in the fused carborane. The ¹³C pulse Fourier-transform NMR data (Table I) confirm the presence of one type of trimethylsilyl, one type of cage CH, and one type of cage SiCB carbon. Although the chemical shift of the trimethylsilyl carbon resonance is unchanged, the cage carbon resonances shifted significantly from those of the precursor, $nido-[(CH_3)_3Si]_2C_2B_4H_6^{3}$

The most significant feature in the infrared spectrum⁶ is the absence of a stretching mode of vibration due to a B-H-B bridge bond.

The IR, NMR, and mass spectroscopic data for [(CH₃)₃- $Si_{2}C_{4}B_{8}H_{10}$ are all consistent with the structure proposed in Scheme I. The data are also analogous to those reported by Grimes et al.⁷ for the $R_4C_4B_8H_8$ isomer having a distorted ico-

⁽¹⁾ Maxwell, W. M.; Miller, V. R.; Grimes, R. N. Inorg. Chem. 1976, 15, 1343. Maxwell, W. M.; Miller, V. R.; Grimes, R. N. J. Am. Chem. Soc. 1976, 98, 4818. Maynard, R. B.; Grimes, R. N. Inorg. Synth. 1983, 22, 215. Maynard, R. B.; Grimes, R. N. J. Am. Chem. Soc. 1982, 104, 5983. Grimes, R. N.; Maynard, R. B.; Sinn, E.; Brewer, G.; Long, G. J. J. Am. Chem. Soc. 1982, 104, 5987. Grimes, R. N. Adv. Inorg. Chem. Radiochem. 1983, 26, 55.

⁽²⁾ Grimes, R. N. Acc. Chem. Res. **1978**, 11, 420. Hosmane, N. S.; Grimes, R. N. Inorg. Chem. **1980**, 19, 3482. Maxwell, W. M.; Wong, K. S.; Grimes, R. N. Inorg. Chem. **1977**, 16, 3094. Pipal, J. R.; Grimes, R. N. Inorg. Chem. **1979**, 18, 263; Ibid. **1979**, 18, 1936. Brewer, C. T.; Grimes, R. N. J. Am. Chem. Soc. 1984, 106, 2722

⁽⁶⁾ IR (CDCl₃ vs. CDCl₃): 2959 (s), 2900 (m), 2590 (vs), 1410 (w), 1320 (w), 1252 (vs), 1170 (m br), 1020 (m br), 840 (vvs), 780 (sh), 670 (m), 620 (w), 12-2 (v3), 11-5 (m c), 12-2 (m c), 12-2 (w), 12-2 (v3), 11-5 (m c), 12-2 (v3), 11-5 (m c), 12-2 (v3), 11-5 (m c), 12-2 (v3), 12

^{16, 1847.}

sahedral geometry similar to the one shown in Scheme I.

The C-trimethylsilyl-substituted tetracarbon carborane shows a remarkable resistance to fluxional behavior in its liquid state (neat sample) or in solution. This is in contrast with the observations made by Grimes et al.^{1,2} where isomerization of $R_4C_4B_8H_8$ $(R = CH_3 \text{ or } C_2H_5)$ was found to occur in a matter of minutes in solution.

The nonsublimable material obtained among the products may be a carbon-carbon-linked free-radical polymer of the type {- $[(CH_3)_3Si]_2C_4B_8H_8]_n$ -produced during the fusion process. The detailed characterization of this polymeric product is currently in progress but is far from complete owing to its insolubility in most organic solvents.

The exact mechanism of the fusion process is not known. The presence of trimethylsilane in the products requires the rupture of a $Si-C_{cage}$ bond and the abstraction of a hydrogen atom. Scheme I outlines a plausible sequence by which two nido-2,3- $[(CH_3)_3Si]_2$ -2,3- $C_2B_4H_6$ molecules could fuse to give the *nido*- $[(CH_3)_3Si]_2C_4B_8H_{10}$. This scheme involves the high-temperature formation of a trimethylsilyl radical which then could extract one of the carborane bridge-hydrogen atoms forming trimethylsilane and a reactive carborane fragment that could easily condense with another such fragment to yield the fused carborane product. This scheme could also explain the relative ease of fusion of silylcontaining carboranes compared to the corresponding C-alkylsubstituted ones. The stronger C-C bonds would be less likely to rupture than the C-Si bonds, thus preventing the fusion process from taking place in the absence of a metal-complex intermediate or a metal catalyst.

This work demonstrates the significance of the C-trimethylsilyl groups of the small carboranes in synthetic transformations and opens up a new area of synthetic carborane chemistry. Studies on the fusion process involving other carboranes such as [(C- $H_3_3Si][CH_3]C_2B_4H_6$ and $[(CH_3)_3Si]C_2B_4H_7$ are now in progress.

Acknowledgment. This work was supported by a Cottrell grant from the Research Corporation and by the donors of the Petroleum Research Fund, administered by the American Chemical Society. We thank Professors S. G. Shore and J. A. Maguire for their helpful suggestions concerning this work.

Observation of Two-Bond ¹¹¹Cd-¹¹³Cd Nuclear Spin-Spin Coupling in [Cd₄(SPh)₁₀]²⁻

Philip A. W. Dean* and Jagadese J. Vittal

Department of Chemistry University of Western Ontario London, Ontario N6A 5B7, Canada Received May 17, 1984

The ¹¹³Cd-¹¹³Cd scalar couplings of 20-50 Hz observed in the ¹¹³Cd NMR spectra of ¹¹³Cd-enriched cadmium metallothionein (¹¹³Cd-MT) have proved invaluable in elucidation of the spatial disposition of the several cadmium ions in the cysteinyl binding sites of the protein.^{1,2} From such couplings, mammalian ¹¹³Cd-MT has been shown to contain two types of polynuclear cadmium clusters, one with three metal atoms, the other with four,¹ while ¹¹³Cd-MT from crab has been shown to contain two distinct three-atom clusters.^{1,2} Apart from in ¹¹³Cd-MT, scalar coupling between ¹¹³Cd nuclei has only been observed in one case: very recently, Sadler and co-workers³ reported the occurrence of 80 \pm 4 Hz couplings in the ¹¹³Cd NMR spectrum of an as yet

Figure 1. ¹¹¹Cd NMR spectrum at 42.42 MHz and 295 K of (a) a 0.05 M solution of natural 2 in acetone. The spectrum results from accumulation of 11 315 45° (10 μ s) pulses at 3-s intervals with an acquisition time of 1 s (a 2-Hz line broadening has been applied); (b) a 0.05 M solution of 113 Cd-enriched **2** (111 Cd: 113 Cd:zerospin Cd = 0.13:1:0.85) in acetone. The spectrum results from 28 060 transients obtained as in a; a 3-Hz line broadening has been applied. No proton decoupling was used in either a or b (see text).

incompletely characterized probably polymeric cadmium complex of deprotonated dicysteinoethylenediaminetetraacetic acid. At present then, although various models have been proposed⁴ for the metal chemical shifts of ¹¹³Cd-MT, it remains true of the ¹¹³Cd-¹¹³Cd couplings that "it is not possible to extract additional structural details from the coupling constants since no other structurally defined polynuclear complexes have been reported which exhibit resolved ¹¹³Cd-¹¹³Cd couplings with which the metallothionein coupling constants might be compared".² We report here the first example of ¹¹¹Cd-¹¹³Cd coupling, in the ¹¹¹Cd and ¹¹³Cd NMR spectra of the structurally characterized⁵ $[Cd_4(SPh)_{10}]^{2-}$ ion, and hence we are able to deduce the corresponding $^{113}Cd^{-113}Cd$ coupling. From X-ray analysis of $(Et_4N)(Et_3NH)[Cd_4(SPh)_{10}]$ (1) the $[Cd_4(SPh)_{10}]^{2-}$ anion is known to possess a structure based on an adamantane-like Cd₄- $(\mu$ -S)₆ cage, each cadmium ion being associated with one terminal and three bridging benzenethiolate ligands.⁵ The 291 K. 66.58-MHz ¹¹³Cd NMR spectrum of 1 in acetonitrile has been described as a single sharp resonance with δ_{Cd} 576 and $\Delta v_{1/2}$ = 25 Hz.^{6,7}

At ambient probe temperature of 295 ± 1 K, without proton decoupling (see below), thermally equilibrated 0.05 M solutions of $(Me_4N)_2[Cd_4(SPh)_{10}]$ (2)⁸ in acetonitrile or acetone show 42.42-MHz¹¹¹Cd and 44.37-MHz¹¹³Cd NMR spectra consisting of a sharp center band with δ_{Cd} 578 (MeCN) and 575 (Me₂CO) and $\Delta v_{1/2} \approx 8$ Hz in both solvents, flanked symmetrically by one strong pair of satellites and a second much weaker more widely separated pair of satellites. A typical spectrum, the 295 K, 42.42-MHz ¹¹¹Cd NMR spectrum of 2 in acetone, is shown in Figure 1a. The signal amplitudes¹⁰ of the center band and stronger pair of satellites are approximately 0.22:1:0.22 in the ¹¹¹Cd NMR spectrum and 0.24:1:0.24 in the corresponding ¹¹³Cd NMR spectrum. Intensities of 0.22:1:0.22 and 0.23:1:0.23 are expected

(4) Lacelle, S.; Stevens, W. C.; Kurtz, D. M., Jr.; Richardson, J. W., Jr.; Jacobson, R. A. Inorg. Chem. 1984, 23, 930-935 and references therein.
 (5) Hagen, K. S.; Holm, R. H. Inorg. Chem. 1983, 22, 3171-3174.
 (6) Hagen, K. S.; Stephan, D. W.; Holm, R. H. Inorg. Chem. 1982, 21,

3928-3936.

⁽¹⁾ For a recent review of ¹¹³Cd NMR studies of metallothionein, see: Otvos, J. D.; Armitage, I. M. in "Biochemical Structure Determination by NMR"; Bothner-By, A. A., Glickson, J. D., Sykes, B. D., Eds.; Marcel Dekker: New York, 1982; Chapter 4.

⁽²⁾ Otvos, J. D.; Olafson, R. W.; Armitage, I. M. J. Biol. Chem. 1982, 257, 2427-2431.

⁽³⁾ Bulman, R. A.; Nicholson, J. K.; Higham, D. P.; Sadler, P. J. J. Am. Chem. Soc. 1984, 106, 1118-1119.

⁽⁷⁾ The ¹¹³Cd chemical shift was referenced to external 0.1 M Cd- $(ClO_4)_2(aq)$. The same technique and standard have been used in the present work

^{(8) 2} was synthesized from $Cd(NO_3)_2$ $4H_2O$, Me_4NCl , and a slight excess of NaSPh in MeOH. Anal. Caled for ($C_{68}H_{72}Cd_{4}N_{2}S_{10}$): C, 48.34; H, 4.41. Found: C, 48.25; H, 4.44. ¹³C NMR δ_c ((CD₃)₂CO) 55.9 (Me₄N), 123.5 (Ar C₄), 128.4 (Ar C_{3,5}), 134.4 (Ar C_{2,6}), 140.5 (Ar C₁). The synthesis and characterization of this salt is also described in very recent work by Dance and co-workers.⁶

⁽⁹⁾ Dance, I. G.; Choy, A.; Scudder, M. L. J. Am. Chem. Soc., in press. (10) Because of signal overlap, signal amplitudes are used as an approximation to signal intensities